Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 32(4): 466-478.e11, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479395

RESUMO

Human cytomegalovirus (HCMV) is an important human pathogen that regulates host immunity and hijacks host compartments, including lysosomes, to assemble virions. We combined a quantitative proteomic analysis of HCMV infection with a database of proteins involved in vacuolar acidification, revealing Dmx-like protein-1 (DMXL1) as the only protein that acidifies vacuoles yet is degraded by HCMV. Systematic comparison of viral deletion mutants reveals the uncharacterized 7 kDa US33A protein as necessary and sufficient for DMXL1 degradation, which occurs via recruitment of the E3 ubiquitin ligase Kip1 ubiquitination-promoting complex (KPC). US33A-mediated DMXL1 degradation inhibits lysosome acidification and autophagic cargo degradation. Formation of the virion assembly compartment, which requires lysosomes, occurs significantly later with US33A-expressing virus infection, with reduced viral replication. These data thus identify a viral strategy for cellular remodeling, with the potential to employ US33A in therapies for viral infection or rheumatic conditions, in which inhibition of lysosome acidification can attenuate disease.


Assuntos
Citomegalovirus , Proteômica , Humanos , Citomegalovirus/fisiologia , Montagem de Vírus , Replicação Viral , Proteínas , Autofagia , Lisossomos , Concentração de Íons de Hidrogênio
2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35105802

RESUMO

Human cytomegalovirus (HCMV) is an important human pathogen and a paradigm of viral immune evasion, targeting intrinsic, innate, and adaptive immunity. We have employed two orthogonal multiplexed tandem mass tag-based proteomic screens to identify host proteins down-regulated by viral factors expressed during the latest phases of viral infection. This approach revealed that the HIV-1 restriction factor Schlafen-11 (SLFN11) was degraded by the poorly characterized, late-expressed HCMV protein RL1, via recruitment of the Cullin4-RING E3 Ubiquitin Ligase (CRL4) complex. SLFN11 potently restricted HCMV infection, inhibiting the formation and spread of viral plaques. Overall, we show that a restriction factor previously thought only to inhibit RNA viruses additionally restricts HCMV. We define the mechanism of viral antagonism and also describe an important resource for revealing additional molecules of importance in antiviral innate immunity and viral immune evasion.


Assuntos
Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Evasão da Resposta Imune , Proteínas Nucleares/imunologia , Proteólise , Proteínas do Envelope Viral/imunologia , Citomegalovirus/genética , Infecções por Citomegalovirus/genética , Humanos , Proteínas Nucleares/genética , Complexos Ubiquitina-Proteína Ligase/genética , Complexos Ubiquitina-Proteína Ligase/imunologia , Proteínas do Envelope Viral/genética
3.
Front Immunol ; 12: 600056, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33628210

RESUMO

The cellular response to interferon (IFN) is essential for antiviral immunity, IFN-based therapy and IFN-related disease. The plasma membrane (PM) provides a critical interface between the cell and its environment, and is the initial portal of entry for viruses. Nonetheless, the effect of IFN on PM proteins is surprisingly poorly understood, and has not been systematically investigated in primary immune cells. Here, we use multiplexed proteomics to quantify IFNα2a-stimulated PM protein changes in primary human CD14+ monocytes and CD4+ T cells from five donors, quantifying 606 and 482 PM proteins respectively. Comparison of cell surface proteomes revealed a remarkable invariance between donors in the overall composition of the cell surface from each cell type, but a marked donor-to-donor variability in the effects of IFNα2a. Furthermore, whereas only 2.7% of quantified proteins were consistently upregulated by IFNα2a at the surface of CD4+ T cells, 6.8% of proteins were consistently upregulated in primary monocytes, suggesting that the magnitude of the IFNα2a response varies according to cell type. Among these differentially regulated proteins, we found the viral target Endothelin-converting enzyme 1 (ECE1) to be an IFNα2a-stimulated protein exclusively upregulated at the surface of CD4+ T cells. We therefore provide a comprehensive map of the cell surface of IFNα2a-stimulated primary human immune cells, including previously uncharacterized interferon stimulated genes (ISGs) and candidate antiviral factors.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Enzimas Conversoras de Endotelina/imunologia , Interferon-alfa/farmacologia , Monócitos/imunologia , Linfócitos T CD4-Positivos/citologia , Humanos , Monócitos/citologia , Proteômica
4.
Cell Rep ; 33(1): 108235, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33027661

RESUMO

Herpesviruses are ubiquitous in the human population and they extensively remodel the cellular environment during infection. Multiplexed quantitative proteomic analysis over the time course of herpes simplex virus 1 (HSV-1) infection was used to characterize changes in the host-cell proteome and the kinetics of viral protein production. Several host-cell proteins are targeted for rapid degradation by HSV-1, including the cellular trafficking factor Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC). We show that the poorly characterized HSV-1 pUL56 directly binds GOPC, stimulating its ubiquitination and proteasomal degradation. Plasma membrane profiling reveals that pUL56 mediates specific changes to the cell-surface proteome of infected cells, including loss of interleukin-18 (IL18) receptor and Toll-like receptor 2 (TLR2), and that cell-surface expression of TLR2 is GOPC dependent. Our study provides significant resources for future investigation of HSV-host interactions and highlights an efficient mechanism whereby a single virus protein targets a cellular trafficking factor to modify the surface of infected cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas da Matriz do Complexo de Golgi/metabolismo , Herpesvirus Humano 1/metabolismo , Proteômica/métodos , Células HEK293 , Humanos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...